A2C 2

MountainCar - Policy Gradient Methods, 그리고 회귀

다양한 알고리즘의 고민이전 글에서 이것 저것 수행해보고 난 뒤, 좀 더 다양한 기법들에 대해 트레이드오프를 이해할 필요성을 느낀 나는 다양한 알고리즘을 공부했다. 하지만 이번 MountainCar 환경에서는, 결국 DQN으로 다시 회귀할 수밖에 없었다.그 근거는 다음과 같다.나는 최근 다양한 정책 경사 알고리즘들을 공부해왔는데, 각 알고리즘은 해결하고자 하는 문제가 현재 MountainCar 의 상황과 맞지 않았다.하이퍼파라미터 튜닝은 예술의 영역이고, 숙련자들 또한 기존에 푼 문제와 논문에 존재하는 하이퍼파라미터를 참고하여 하이퍼파라미터를 설정한다는 것을 확인했다. REINFORCEREINFORCE는 가장 기초적인 Policy Gradient Method로, 다음과 같은 이점과 한계를 갖고 있다.이점정..

[강화학습] A2C

지난 글에선 REINFORCE 알고리즘을 공부했다.이 알고리즘은 간단한 CartPole 예제에는 잘 작동했지만, 좀 더 복잡한 환경의 강화학습에는 그리 잘 통과하지 않는다. 한편, DQN의 경우 이산적인 동작 공간에서 상당히 효과적이지만, 입실론-그리디 정책같은 개별적인 정책 함수가 필요하다는 단점이 있다. 이번 글에서는 REINFORCE의 장점과 DQN의 장점을 합친 actor-critic(행위자-비평자)라는 알고리즘을 소개한다.이 모델은 여러 문제 영역에서 최고 수준의 성과를 낸 바 있다.REINFORCE 알고리즘은 일반적으로 일회적 알고리즘(에피소딕, episodic algorithm)으로 구현된다.이는 에이전트가 하나의 에피소드 전체를 끝낸 후에야 그 에피소드에서 수집한 보상들로 모델의 매개변수들..