
사실 이번 장에서는 밑바닥부터 시작하는 딥러닝 1의 경우 계산 그래프를 이용해 설명을 진행한다.해당 방식의 경우 그래프 개념으로 이해하기 쉽게 설명되어 있지만, 기계적인 암기 방법이라 시간복잡도 개선에 대한 인사이트를 얻긴 쉽지 않았다.따라서 이번 장의 내용은 책의 내용이 아닌 수식으로 정리한 방식으로 설명을 진행한다.계산 그래프와 시각 자료를 이용한 설명이 필요하시다면, 해당 책을 구입하셔서 보시는 것을 추천드립니다. 책 내용도 좋습니다.기존 방식먼저 들어가기 전에, 기존 방식의 문제점을 파악해보자.식 정리모델이 갖고 있는 가중치의 집합을 θ라 하자.아래를 "특정 y에 대한 손실 함수"라고 하자.전체 우리가 최소화하고자 하는 전체 손실 함수(Cost function)은 다음과 같이 표현될 것이다.수식에..